Derived p-adic heights
نویسندگان
چکیده
2 Derived p-adic heights 2.1 Derived heights for cyclic groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Comparison of pairings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Compatibility of the derived heights . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Derived p-adic heights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 Refined Birch-Swinnerton Dyer formulae . . . . . . . . . . . . . . . . . . . . . . . . . 18
منابع مشابه
Efficient Computation of P-adic Heights
We analyse and drastically improve the running time of the algorithm of Mazur, Stein and Tate for computing the canonical cyclotomic p-adic height of a point on an elliptic curve E/Q, where E has good ordinary reduction at p ≥ 5.
متن کاملOn 3-adic Heights on Elliptic Curves
In 2006, Mazur, Stein, and Tate [4] gave an algorithm for computing p-adic heights on elliptic curves E over Q for good, ordinary primes p ≥ 5. Their work makes essential use of Kedlaya’s algorithm [3], where the action of Frobenius is computed on a certain basis of the first de Rham cohomology of E, with E given by a “short” Weierstrass model. Kedlaya’s algorithm requires that the working mode...
متن کاملHigher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$
Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...
متن کاملComputation of p-Adic Heights and Log Convergence
This paper is about computational questions regarding p-adic height pairings on elliptic curves over a global field K. The main stumbling block to computing them efficiently is in calculating, for each of the completions Kv at the places v of K dividing p, a single quantity: the value of the p-adic modular form E2 associated to the elliptic curve. Thanks to the work of Kedlaya et al., we offer ...
متن کاملLocal Heights on Abelian Varieties and Rigid Analytic Uniformization
We express classical and p-adic local height pairings on an abelian variety with split semistable reduction in terms of the corresponding pairings on the abelian part of the Raynaud extension (which has good reduction). Here we use an approach to height pairings via splittings of biextensions which is due to Mazur and Tate. We conclude with a formula comparing Schneider's p-adic height pairing ...
متن کامل